Diameter asymmetry of porcine coronary arterial trees: structural and functional implications.
نویسندگان
چکیده
The coronary vasculature is characterized by highly asymmetric diameters at bifurcations, which may be an important determinant of flow distribution. To facilitate accurate reconstruction of the coronary network for hemodynamic analysis, we introduce a statistical data set of the diameter asymmetry at bifurcations based on morphometric data of the porcine coronary arterial and venous trees. The bifurcation asymmetry data were represented by the diameter ratio of the daughters relative to mother vessel and by an area expansion ratio (AER) at each bifurcation. A novel asymmetry ratio matrix was introduced to describe the diameter asymmetry of daughters to mother vessels. The relations between AER and flow velocity, and asymmetry ratio matrix and flow distribution, were considered. The results indicate that the ratio of large daughter to mother vessel has a minimum value at order 5 (mean diameter of approximately 70 microm), whereas the ratio of small daughter to mother vessel decreases monotonically with increase in order number. The AER was found to be fairly uniform for larger vessels and to increase from order 5 toward the capillaries. At order 5, we observe a transition in asymmetric bifurcation pattern that may mark a hemodynamic transition from transmural to perfusion subnetworks. The functional implications of these structural transitions are considered.
منابع مشابه
Scaling of myocardial mass to flow and morphometry of coronary arteries.
There is no doubt that scaling relations exist between myocardial mass and morphometry of coronary vasculature. The purpose of this study is to quantify several morphological (diameter, length, and volume) and functional (flow) parameters of the coronary arterial tree in relation to myocardial mass. Eight normal porcine hearts of 117-244 g (mean of 177.5 +/- 32.7) were used in this study. Vario...
متن کاملBranching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity.
The aim of this study is to quantify the porcine coronary arterial branching pattern and to use this quantification for the interpretation of flow heterogeneity. Two casts of the coronary arterial tree were made at diastolic arrest and maximal dilation. The relation between length and diameter of arterial segments was quantified, as well as the area expansion ratio and diameter symmetry of vasc...
متن کاملBifurcation asymmetry of the porcine coronary vasculature and its implications on coronary flow heterogeneity.
The branching pattern of the coronary arteries and veins is asymmetric, i.e., many small vessels branch off of a large trunk such that the two daughter vessels at a bifurcation are of unequal diameters and lengths. One important implication of the geometric vascular asymmetry is the dispersion of blood flow at a bifurcation, which leads to large spatial heterogeneity of myocardial blood flow. T...
متن کاملLongitudinal position matrix of the pig coronary vasculature and its hemodynamic implications.
Hemodynamic analysis of coronary blood flow must be based on a statistically valid geometric model of the coronary vasculature. We have previously developed a diameter-defined Strahler model for the arterial and venous trees and a network model for the capillaries. A full set of data describing the geometric properties of the porcine coronary vasculature was given. The order number, diameter, l...
متن کاملLimited Bifurcation Asymmetry in Coronary Arterial Tree Models Generated by Constrained Constructive Optimization
Models of coronary arterial trees are generated by the algorithm of constrained constructive optimization (CCO). In a given perfusion area a binary branching network of straight cylindrical tubes is generated by successively adding terminal segments to the growing structure. In each step the site of connection is chosen according to an optimization target function (total intravascular volume), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 294 2 شماره
صفحات -
تاریخ انتشار 2008